Work Files Saved Searches
   My Account                                                  Search:   Quick/Number   Boolean   Advanced       Help   


 The Delphion Integrated View

  Buy Now:   Buy PDF- 43pp  PDF  |   File History  |   Other choices   
  Tools:  Citation Link  |  Add to Work File:    
  View:  Expand Details   |  INPADOC   |  Jump to: 
 
 Email this to a friend  Email this to a friend 
       
Title: US5602968: Task space angular velocity blending for real-time trajectory generation
[ Derwent Title ]


Country: US United States of America

View Images High
Resolution

 Low
 Resolution

 
43 pages

 
Inventor: Volpe, Richard A.; La Crescenta, CA

Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, Washington, DC
other patents from UNITED STATES OF AMERICA, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (597260) (approx. 4,819)
 News, Profiles, Stocks and More about this company

Published / Filed: 1997-02-11 / 1994-05-02

Application Number: US1994000238041

IPC Code: Advanced: B25J 9/16;
IPC-7: G05B 13/00; G05B 19/42;

ECLA Code: B25J9/16P3; S05B219/34098; S05B219/39242; S05B219/40512;

U.S. Class: Current: 700/262; 318/568.18; 700/245; 700/252;
Original: 395/097; 395/080; 395/086; 395/087; 318/568.18;

Field of Search: 395/097,80,86,87 318/568.18

Government Interest:

ORIGIN OF THE INVENTION
    The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the contractor has elected not to retain title.

Priority Number:
1994-05-02  US1994000238041

Abstract:     The invention is embodied in a method of controlling a robot manipulator moving toward a target frame F0 with a target velocity v0 including a linear target velocity nu and an angular target velocity omega 0 to smoothly and continuously divert the robot manipulator to a subsequent frame F1 by determining a global transition velocity v1, the global transition velocity including a linear transition velocity nu 1 and an angular transition velocity omega 1, defining a blend time interval 2 tau 0 within which the global velocity of the robot manipulator is to be changed from a global target velocity v0 to the global transition velocity v1 and dividing the blend time interval 2 tau 0 into discrete time segments delta t. During each one of the discrete time segments delta t of the blend interval 2 tau 0, a blended global velocity v of the manipulator is computed as a blend of the global target velocity v0 and the global transition velocity v1, the blended global velocity v including a blended angular velocity omega and a blended linear velocity nu , and then, the manipulator is rotated by an incremental rotation corresponding to an integration of the blended angular velocity omega over one discrete time segment delta t.

Attorney, Agent or Firm: Kusmiss, John H. ;

Primary / Asst. Examiners: Davis, George B.;

Maintenance Status: E3 Expired  Check current status

INPADOC Legal Status: Show legal status actions

Family: None

First Claim:
Show all 23 claims
What is claimed is:     1. A method of controlling a robot manipulator moving toward a target frame F0 with a target velocity v0 comprising a linear target velocity ν with an angular target velocity ω0 to smoothly and continuously divert said robot manipulator to a subsequent frame F1, said target frame being associated with a target transition time T0 and said subsequent frame being associated with a subsequent transition time T1, said method comprising the steps of:
  • determining a global transition velocity v1 necessary to move said manipulator from said target frame F0 to said subsequent frame F1 within said subsequent transition time T1, said global transition velocity comprising a linear transition velocity ν1 and an angular transition velocity ω1 ;
  • defining a blend time interval 2.tau.0 within which the global velocity of said robot manipulator is to be changed from a global target velocity v0 to said global transition velocity v1 and dividing said blend time interval 2.tau.0 into discrete time segments δt;
  • during each one of said discrete time segments δt of said blend interval 2.tau.0 ;
  • (a) computing a blended global velocity v of said manipulator as a blend of said global target velocity v0 and said global transition velocity v1, said blended global velocity v being at least approximately equal to said target global velocity v0 at the beginning of said blend time interval and at least approximately equal to said global transition velocity v1 at the end of said blend time interval, said blended global velocity v comprising a blended angular velocity ω and a blended linear velocity ν, and
  • (b) rotating said manipulator by an incremental rotation corresponding to an integration of said blended angular velocity ω over one discrete time segment δt.


Background / Summary: Show background / summary

Drawing Descriptions: Show drawing descriptions

Description: Show description

Forward References: Show 9 U.S. patent(s) that reference this one

       
U.S. References: Go to Result Set: All U.S. references   |  Forward references (9)   |   Backward references (28)   |   Citation Link

Buy
PDF
Patent  Pub.Date  Inventor Assignee   Title
Get PDF - 9pp US4218172  1980-08 Freund  Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V. Method of and arrangement for controlling manipulators and industrial robots
Get PDF - 19pp US4360886  1982-11 Kostas et al.  Nordson Corporation Method and apparatus for analyzing the feasibility of performing a programmed sequence of motions with a robot
Get PDF - 28pp US4529921  1985-07 Moribe  Kabushiki Kaisha Toyota Chuo Kenkyshuo Tracking control system of multijoint robot
Get PDF - 17pp US4554497  1985-11 Nozawa et al.  Fanuc Ltd. Acceleration/deceleration circuit
Get PDF - 8pp US4593366  1986-06 Sugimoto et al.  Hitachi, Ltd. Method of controlling robot
Get PDF - 19pp US4616326  1986-10 Meier et al.  Siemens Aktiengesellschaft Self optimizing robot controller
Get PDF - 16pp US4663726  1987-05 Chand et al.  General Electric Co. Robot control utilizing cubic spline interpolation
Get PDF - 15pp US4675502  1987-06 Haefner et al.  General Electric Company Real time tracking control for taught path robots
Get PDF - 7pp US4683543  1987-07 Hirasawa et al.  Matsushita Electrical Industrial Co. Ltd. Time-based interpolation control of a robot
Get PDF - 21pp US4689756  1987-08 Koyama et al.  Shin Meiwa Industry Co., Ltd. Robot interpolation control method
Get PDF - 9pp US4698777  1987-10 Toyoda et al.  Fanuc Ltd. Industrial robot circular arc control method for controlling the angle of a tool
Get PDF - 8pp US4727303  1988-02 Morse et al.  GMF Robotics Corporation Positional control method and system utilizing same
Get PDF - 10pp US4734866  1988-03 Bartelt et al.  Siemens Aktiengesellschaft Computer controller for an industrial multiaxis robot
Get PDF - 10pp US4771389  1988-09 Takahashi et al.  Nissan Motor Co., Ltd. Control method and unit for controlling a manipulator
Get PDF - 12pp US4797835  1989-01 Kurami et al.  Nissan Motor Company, Limited Model follower control apparatus
Get PDF - 9pp US4821207  1989-04 Ming et al.  Ford Motor Company Automated curvilinear path interpolation for industrial robots
Get PDF - 9pp US4879663  1989-11 Fuehrer  Siemens Aktiengesellschaft Method for determining points in space guiding the movement of a robot arm
Get PDF - 17pp US4887222  1989-12 Miyake et al.  Hitachi, Ltd. Method for controlling operation of industrial robot
Get PDF - 8pp US4967125  1990-10 Hara  Fanuc Ltd. Tool posture control method for a robot
Get PDF - 20pp US5015821  1991-05 Sartorio et al.  Amada Company, Limited Computer controlled welding robot
Get PDF - 14pp US5020001  1991-05 Yamamoto et al.  Toyoda Koki Kabushiki Kaisha Robot controller
Get PDF - 41pp US5046852  1991-09 Hametner et al.  The Boeing Company Method and apparatus for bending an elongate workpiece
Get PDF - 10pp US5129045  1992-07 Stelzer et al.  Siemens Aktiengesellschaft Method for the control of positioning systems
Get PDF - 13pp US5157315  1992-10 Miyake et al.  Hitachi, Ltd. Method of controlling robot movements
Get PDF - 14pp US5285525  1994-02 Nagao et al.  Kawasaki Jukogyo Kabushiki Kaisha Industrial robot control method and apparatus
Get PDF - 9pp US5287049  1994-02 Olomski et al.  Siemens Aktiengesellschaft Method for triggering switching operations related to position during a machining process carried out by a robot or a machine tool
Get PDF - 24pp US5430643  1995-07 Seraji  The United States of America as represented by the Administrator of the National Aeronautics and Space Administration Configuration control of seven degree of freedom arms
Get PDF - 12pp US5467430  1995-11 Itoh  Mitsubishi Denki Kabushiki Kaisha Robot controlling method and apparatus
       
Foreign References: None

Other Abstract Info: DERABS G1997-132127 DERABS G1997-132127

Other References:
  • Angeles et al, "Trajectory planning in Robotics Continuous-Path Applications", IEEE Journal of Robotics and Automation, vol. 4, No. 4, Aug. 1988.
  • Yeung et al, "Efficient Parallel Algorithms and VLSI Architectures of Manipulator Jacobian Computation", IEEE Transactions on Systems, Man, and Sybernetics, vol. 19, No. 5, Sep./Oct. 1989.
  • M. Brady and Others (editors). Robot Motion: Planning and Control MIT Oressm Cambridge, MA, 1982.
  • J. Canny. Collision Detection for Moving Polyhedra. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8 (2), Mar. 1986.
  • J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley, Reading, Massachusetts, 1986.
  • H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, Mass. 1980.
  • C. Lin and P. Chang. Formulation and Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots. IEEE Transactions on Automatic Control, 28(12):1066-1073, 1983. (9 pages)
  • J. Lloyd and V. Hayward. Real-Time Trajectory Generation Using Blend Functions In IEEE International Conference on Robotics and Automation, Sacramento, California, Apr. 1991.
  • M. Mujtaba. Discussion of Trajectory Calculation Methods. Stanford University, Artificial Intelligence Laboratory, AIM 285.4, 1977.
  • R. Paul. Robot Manipulators: Mathematics, Programming and Control MIT Press, Cambridge, MA, 1981.
  • R. Paul. Manipulator Cartesian Path Control, pp. 245-263. MIT Press Cambridge, Mass., 1982.
  • R. Paul and H. Zhang. Robot Motion Trajectory Specification and Generation. In Second International Symposium on Robotics Research, Kyoto, Japan, Aug. 1984.
  • R. Rosenberg and D. Karnopp. Introduction to Physical System Dynamics. McGraw-Hill, New York, 1983.
  • H. Seraji and R. Colbaugh. Improved Configuration Control for Redundant Robots. Journal of Robotics Systems, 7(6), 1990.
  • R. Taylor. Planning and Execution of Straight Line Manipulator Trajectories, pp. 265-286. MIT Press, Cambridge, Mass., 1982.
  • S. Thompson and R. Patel. Formulation of Joint Trajectories for Industrial Robots Using B-Splines. IEEE Transactions on Industrial Electronics, 34(2):192-199, 1987. (8 pages)
  • D. Whitney. Resolved Motion Rate Control of Manipulators and Human Protheses. IEEE Transactions on Man-Machine Systems, 10(2):49-53, Jun. 1969.


  • Inquire Regarding Licensing

    Powered by Verity


    Plaques from Patent Awards      Gallery of Obscure PatentsNominate this for the Gallery...

    Thomson Reuters Copyright © 1997-2014 Thomson Reuters 
    Subscriptions  |  Web Seminars  |  Privacy  |  Terms & Conditions  |  Site Map  |  Contact Us  |  Help